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1. Part 1. Experimental study of wake-boundary layer
interaction for different leading edge shapes

Introduction

Recent progress in both the linear and nonlinear aspects of stability theory has
highlighted the importance of receptivity problem {1]. One of the most unclear
part of receptivity studies is the receptivity of boundary-layer flow to vortical
disturbances. Some experimental [2] and theoretical [3] results permits to propose
that quasi-steady outer-flow vortical disturbances may trigger by-pass transition.
For this reason the experimental and theoretical study of vortex-boundary layer
interaction is an actual task. In present work such interaction is investigated for
the vorticity normal to the leading edge. The interest to this type of vortical
disturbances arises from the theoretical works of M.E. Goldstein et. al. [4-6],
where it was shown that the flow around the leading edge amplifies them through
vortex lines stretching. Far downstream, the amplification leads to significant
distortion of the boundary layer and, finally, to localized flow separation.

The purpose of experimental part of this work is study of the role of vortex
lines stretching mechanism in non-uniform flow interaction with boundary layer.
Such non-uniformity was produced by the wake behind a wire or a sct of wires and
its interaction with boundary layer at the plates of different leading edge shapes
was investigated. Laminar-turbulent transition caused by wake/boundary layer
interaction is a topic of investigation too.

1.1. Experimental setup and equipment

The experiment was performed in a low-turbulence direct-flow wind tunnel T-36 I
of Central Aerohydrodynamics institute (TsAGI). The test section is 2.6 m long,
0.5 m wide and 0.35 m high, and is preceded by 12:1 contraction. The {ree-stream
turbulence level in the test section is 0.06%, measured in the band 5-1500 Hz atl
velocities greaterthen 5m/s. .

The general outline of experimental setup is shown in Figure 1 . Interaction
of wake from vertically stretched wire or a set of wires with the boundary layer
over the horizontally mounted plate was studied. Four plates with different shapes
of leading edge shown in Figure 2 were used. These plates of 1810 mm long,
500 mm wide and 20 mm thick were made from Plexiglas and had drains for
static pressure distribution measurements. Plates # 1,2 and 4 had semi-elliptical
leading edges of aspect ratios 8:1, 4:1, and 1:1. The last semicircular leading
edge is too blunt, so local separated bubble occurred when the flow around it is
symmetric. In order to achieve the non-separated symmetric flow over possibly
blunt nose, the leading edge of plate #3 was designed. The contour of this leading



edge is described by expression
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where z,y are longitudinal and vertical coordinates of nose contour, H =
20mm - thickness of the plate, @ = 4.65. The radii of noses of plates #1,2,3,4 are
1.25mm, 2.5mm, 5.31mm, 10mm respectively, so the plate #1 had the most
sharp nose and nose radius grows monotonically with number of plate increase.

To control the stagnation point position over nose two flaps mounted above
the plate near its trailing edge were used. The wires were stretched al the holder
moving horizontally with steps 0.1 mm. All three components of velocity were
measured with a DISA 55M01 anemometer. A single hot wire probe ‘with hori-
zontal wire of diameter 5um and a sensitive length 0.5 mm was used for stream-
wise velocity measurements. Spanwise and vertical components of velocity were
measured by X-wire probe of similar dimensions. The probe was mounted on a
carriage and was transversed in streamwise and vertical directions. The accuracy
of probe movement in vertical direction was 0.1 mm. Instead of probe move-
ment in spanwise direction the horizontal transmission of the wires was used.
Coordinate system and general designations used are shown in I igure 1 b, c.

1.2. Undisturbed flow around plates

The interaction of non-uniform flow with boundary layer over the plates of dif-
ferent leading edge shape was studied for free-stream velocities u,, = Sm/s aud
17m/s. the most of results were obtained for u., = 17m/s, so the undisturbed
flow around the plates for this velocity only will be described in details. Brief
information concerning flow with u,, = 5m/s is presented in the end of this
subsection, for more fully it is described in previous report.

For plates #1-3 the flow around the leading edge was adjusted to be symmet-
ric. Symmetric flow over blunt semicircular nose of plate #4 was separated, with
the local separated bubble located near nose-plate mating appears. To eliminate
separation the attachment line was moved to upper part of nose and flow around
plate #4 becomes substantially asymmetric.

Velocity distributions along the upper and lower sides of nose for all plates
computed from static pressure measured are shown in Figure 3. For plates #1-3
the velocity at lower and upper sides coincides within 2% of outer flow velocity, so
the flow around leading edge was almost perfectly symmetric. Velocity distribu-
tion over the plate #4 is substantially asymmetric, with velocity at upper side of
1t is smaller then this at the lower side. Moreover, velocities in first two points at
upper side are approximately the same. So, stagnation point was located between
two first drains i.e. at y between 2 and 4mm.

At all plates the flow accelerates initially and then retreads to u.. near the
beginning of the plane part of the surface. In accordance with theory, the largest



acceleration should occur at the most blunt nose and the velocity maxinwm
should decrease as the leading edge becomes sharper. This rule really fulfilled for
velocity distributions at plates #1-3. The most blunt nose plate #4 stands out
of this rule, with the velocity maximum at the upper side of it is the smallest.
The reason of this is the asymmetric flow about leading edge of plate #4.

Velocity distributions along the plane parts of all plates measured by hot wire
probe outside the boundary layer (at y = 40mm) are plotted in Figure 4. For
plates #1-3 there exist a slight negative pressure gradient along z and pressure
gradient is slightly positive for plate #4. All these gradients are very small, with
velocity varies by 1% over the length of 1m.

Velocity profiles in the boundary layer at different distances z from the leading
edge for plates #1-4 are shown in Figures 5-8. Near the leading edge (z = 20
and 40 mm) the profiles have maxima at the joint of boundary layer and inviscid
flow. The velocity at these maxima (shown by open symbols in figure 3) closely
coincides with velocity obtained from static pressure measurements. Far from
leading edge velocity profiles tends to Blasius profile for flat-plate boundary layer.

At plates #1-3 the flow in boundary layer was laminar with r.m.s. velocity
pulsations in it was less then 0.3% of uo, over all plates length. Laminar- turbulent
transition was observed in a boundary layer of plate #4 at z ~ 500mm. Two
factors may cause the transition: positive pressure gradient and amplification of
outer flow pulsations at the blunt nose.

Only plates #2 and 4 were tested for outer flow velocity 5m/s. Velocity
distributions over noses for this speed were the same as these for u,, = 17m/s
with accuracy ~ 4/%. The distributions of velocity over plane parts of the plates
for us, = 17m/s and 5m/s coincides within accuracy of measurements (~ 0.3%).
The boundary layer at both plates in flow with u,, = 5m/s was laminar, with
r.m.s. velocity pulsations in it were less then 0.2% from u.,.

1.3. Flow in wakes

In the reported work four wakes were used as a source of upstream inhomogeneity.
One of them is steady laminar wake behind a wire of d = 0.09mm in a flow with
Us = 9m/s. The Reynolds number of this wake based on diameter of the wire
was g = ued/v = 31 and velocity pulsations within it are the same as in the
free stream. Two next wakes: the wake behind the wire of d = 0.09mm in flow
with 4o = 17m/s and the wake from wire of d = 0.3mm in flow with w., = 5m/s
were not entirely laminar. Both of them had Reynolds number Ry ~ 105, whicl
exceeds the critical Reynolds number R, ~ 40— 50 for steady laminar flow around
the cylinder [8]. So, the Karman vortex street occurs in the flow behind wire.
This street decays gradually downstream and for distance greaterthen 100 d, the
peak in velocity pulsation spectrum associated with it disappears [8]. Pulsations
in such decayed Karman vortex streets were about 0.2% of the outer flow velocity.
It is more then in laminar wake, but it is sufficiently less then in turbulent one.



The fourth wake was a wake behind a set of wires of d — 0.09mm placed in
distance D = 6mm from each other along the span in flow with ue, = 17m/s.

Profiles of mean velocity in all wakes behind single wire were found well
correlate with formula
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where ug is velocity deficit, b - half-width of the wake, L - distance from the
wire, A, B, ly -constants. For laminar wake it is an exact solution of Prandt]
equations with A = %“\/—%—4, B = 2\/L"R——j, lo = 0. From experimental data for
wake behind wire of d = 0.09mm in flow with U = Sm/s it was found that
A=1.35

For wakes of wire of d = 0.3mm in flow with U = dm/s and ol wire of
d = 0.09mm in flow with u., = 17m/s, which are decayed Karman vortex streets
(L.1) is only a fit of experimental data. Velocity deficits ug,and half-widths b of
these wakes as functions of distance from wire L are plotted in Figures 9 and
10 respectively. Lines in this figures shows fits (1.1) with constants A, B and /,
found from experimental data.

The flow in the wake from a set of wires is more complicated. Mean velocity
profiles measured in these wakes for distances from wires L = 60, 170, 270, 370,
550, 8300mm are shown in Figure 11. Not far from wires (L = 60mm) the wakes ol
the individual wires developed independently one from another. As L increases
(L = 170, 270 and 370mm) the wakes becomes wider and the interaction of
neighboring wakes began. Finally, for L = 550 and 800mm the velocity profile
becomes near-sinusoidal and it remains qualitatively the same for larger distance
from wires. The flow distortion Au, i.e. the difference between maximal and
minimal velocities in profiles as function of L is shown in Figure 10 together with
velocity deficit in the wake from one wire. There were observed no distinctive
difference between the L- dependencies of flow distortion in wakes from the single
wire and from the set of wires. Theoretically, this difference should exist, but the
accuracy of the measurements is not enough to observe it. The maximal velocity
pulsations in the wake from set of wires were about 0.2 — 0.3%, and slightly
exceeds the pulsations in a single wire wake.

1.4. Wake-boundary layer interaction

Interaction of the boundary layer at the plates of different leading edge shapes
with wakes described in previous section was studied for various distances from
wire to leading edge. Geometry and flow parameters of all configurations tested,
that is diameter and amount of wires, velocity, number of plate used, distance



from wire to leading edge are listed in the Table. The Table also includes char-
acteristics of wakes at the leading edge position and other important parameters
describing these configurations.

Interaction of wake behind single wire with boundary layer was studied in
details, so most of this section is devoted to this topic. Only preliminary results
concerning a wake from a set of wire action on boundary layer are described here.

1.4.1. Steady boundary layer distortion

For small outer flow velocity of 5 m/s (configurations 15-19 in Table) the wake
slightly distorted boundary layer. The maximum velocity deviation from undis-
turbed flow was only 3 times grater then velocity deficit in oncoming wake. The
slight effect of vortical disturbances on boundary layer in this regime is caused
by low unit Reynolds number R; = ugl/v = 3.45 * 10° and large boundary
layer thickness comparable with the radius of the plate nose. Main results were
obtained for outer flow velocity 17 m/s corresponding to higher unit Reynolds
number R, = 1.17 * 10%. For this value of R; the maximal flow distortion was
about 10 times grater, then oncoming flow inhomogeneity.

There were observed three qualitatively different regimes of single wire wake
/boundary layer interaction: linear regime, symmetric nonlinear regime and anti-
symmetric nonlinear regime. General features of these regimes will be illustrated
for interaction of wake behind the wire of d = 0.09mm in flow with u,, = 17m/s
with plate #2. For this wake and plate combination linear regime was observed
in configuration 8, when L = 725mm; symmetric nonlinear regime occurred in
configuration 6 when L = 250mm and antisymmetric nonlinear regime occurred
for L = 40mm in configuration 4 (see Table). Evolution in z of spanwise distri-
butions of streamwise velocity in boundary layer observed in these three regimes
are shown in Figures 12, 13, and 14 respectively. The boundary layer flow dis-
tortions Awy as functions of distance from leading edge 2 for the same regimes
are plotted in Figure 15. This distortion Au, is determined as a difference be-
tween the maximal and minimal velocities in the spanwise profile measured for y
corresponding to u = 0.5u,.

Linear regime occurs when the distance from wire to leading edge is large
enough and velocity deficit of oncoming wake is small. In this case the shape
of spanwise distribution of velocity in boundary layer approximately repeats the
velocity profile in the wake. The amplitude of boundary layer distortion grows
almost linearly with distance from leading edge.

When the wire was placed closer to leading edge, the boundary layer re-
sponse to the wake becomes noticeable nonlinear. Nonlinearity manilests itsell
in deformation of spanwise profile of velocity in boundary layer (see Figures 13
and 14). For moderate distance from leading edge L = 250mm, the profile re-
mains symmetric with respect to the wake centre, so this regime of interaction is
called as nonlinear symmetric one. If the wire was placed nearby to leading edge



(L = 40mm), the boundary layer response to the symmetric wake becomes anti-
symmetric as shown in Figure 14). This type of wake/boundary layer interaction
will be called as nonlinear antisymmetric regime. There are two possible anti-
symmetric regimes: the "right” regime (shown in Figure 14) with maximum of
velocity at the right side and the "left” one with maximum at the left side. Both
of these regimes were observed and they change each other randomly when the
wind tunnel was stopped and started again. For definiteness, in all next figures
dealing with antisymmetric flow distortion the right regime is shown. Unlike the
linear regime, the flow distortion in both nonlinear regimes reaches maximum at
about 100mm from leading edge and then decay downstream (see Figure 15). At
large distance from leading edge (600mm for example), the distortion from weak
wake initiating linear regime becomes greater than distortion from high-deficit
wake initiating non-linear regime.

Streamwise velocity distributions in plane normal to flow direction (y,z—
plane) for nonlinear antisymmetric, nonlinear symmetric and linear regimes are
shown in Figures 16a), 17a) and 18. In addition to these data, distributions of
spanwise and vertical components of velocity in this plane for nonlinear anti-
symmetric and nonlinear symmetric regimes are shown in F igures 16 b) and 17
b). Vectors plotted in these Figures are proportional to projection of velocity
onto (y,z) plane. Dashed lines y = 2mm shows the outer edge of boundary
layer where u = 0.99u.,. For distances from the plate y < 1mm the measure-
ments of vertical and spanwise velocity components becomes impossible because
of probe size, so the reconstruction of the flow based on subsequent speculations
is drawn here. Figure 17 b) shows that nonlinear symmetric regime of boundary
layer distortion is associated with two counter-rotational vortices located above
the boundary layer at z & 4mm. In nonlinear antisymmetric regime only one
streamwise vortex at z = 4mm was observed as shown in Figure 16 b).

To explain the formation of three different types of boundary layer distortion,
let’s consider the conceptual scheme of wake/leading edge interaclion, shown in
Figure 19. The wake may be considered as a pair of counter-rotational vortex
sheets. Stretching of these sheets vortex lines around the nose produce a pair of
counter-rotational streamwise vortices at the plate surface. The lifting of Auid
between the vortices causes the diminishing of the streamwise velocity, whereas at
the periphery of them the downwards outer flow leads to growth in the boundary
layer velocity. This explains the boundary layer distortion in linear regime.

In nonlinear symmetric regime the local maximum of velocity in the middle
of the wake appears (see Figure 13). Figure 17 a) shows, that this maximum
becomes more pronounced in the vicinity of the wall. Formation of this maximum
may be explained if we suppose that when streamwise vortices become strong
enough two small-size secondary vortices originate within the boundary layer as
drawn in Figure 17 b). Contrary to main vortices, the secondary vortices drops
fluid in the middle and produce local velocity maximum.

The loss of symmetry and antisymmetric regime production may be explained



by the instability of streamwise vortex system associated with nonlinear symmet-
ric regime. This phenomenon is similar to the well-known Crow instability [7 ]
of a pair of streamwise counter-rotational vortices which manifests in twisting of
vortices in a spiral manner. The result of it should be the lifting of one vortex
and the remained vortex will produce an antisymmetric flow distortion. Such
vortex is really seen in Figure 16 b), where flow in (y,z)— plane for antisym-
metric regime is shown. Another point in support of the instability mechanisni
of antisymmetric regime formation provides the flow distortion development in
configuration 10 shown in Figure 20 a). In this configuration initially symmet-
ric boundary layer distortion gradually becomes asymmetric with z growth and
finally reaches completely antisymmetric state at z = 200mm.

Contrary to unbounded stream where the Crow instability occurs for all vortex
strengths, the wall and viscosity should stabilize the vortex pair. The instability
should occur only if the vortices are strong enough to lift one of them. In accor-
dance with rapid distortion theory [4], the streamwise vorticity is proportional
to initial vertical vorticity in the wake which may be estimated as uy/b. The in-
stability should exist if this vorticity is large with respect to some characteristic
velocity gradient in a flow around the nose. If we suppose the inviscid nature of
instability, this gradient should be u.,/r where r is the radius of nose, and the
non-dimensional stability criterion K = %= can be constructed. If the insta-
bility related with vortices/boundary layer interaction is expected, the vorticity
should be related to velocity gradient in boundary layer over nose. In this casc.
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the stability criterion becomes K, = —b‘l—— where § = (u 2, is the boundary
layer thickness in the stagnation point. Both criteria for all configurations tested
are given in Table. Comparison of two criteria shows that transition of a symmet-
ric flow into antisymmetric some better correlates with inviscid criterion . As
a rule, boundary layer flow is symmetric for K < 0.1 and becomes antisymmetric
for K > 0.2. The exceptions to this rule are configurations configurations 18 and
19 and 13,14, where the symmetric distortion occurs for ' > 0.2. In two first
configurations (18,19) the unit Reynolds number is too small, so the wake width
is approximately equal to boundary layer thickness and wake-boundary layer in-
teraction is fully viscous. In two other configurations 13 and 14 the flow around
the nose of plate #4 was not symmetric, so the comparison of the results with
these for symmetric flow around plates #1-3 is not correct. In any case this corre-
lation shows the significant role of inviscid processes in symmetry/antisymmetry
transformation.

Integral characteristics of boundary layer distorted by wake in all three regimes
of interaction (displacement thickness §*, momentum-loss thickness §**, and form-
parameter H = 6*/6**) as functions of Z are shown in Figure 20 b). This Figure
shows, that wake strongly deforms the boundary layer and it’s parameters vary by
an order of unity. In accordance with the previous speculations, in linear regime
the boundary layer becomes thicker in the wake centre. In nonlinear symmetric



regime the displacement thickness grows at sides of the wake and remains almost
unchanged in it’s centre. The minimum of §* in the wake’s centre js probably
caused by downward flow produced by secondary vortices. The form of §( z) de-
pendance in antisymmetric regime is antisymmetric too, with §* increases at the
lett side where fluid moves upward and decrease at the right side where downward
flow (y, z) plane was observed (see figure 16 b).

Vertical distributions of boundary layer distortion Auy measured in different
configurations and different distances from leading edge z are shown in Figure
21. For convenience, these distortions are normalized by their maximums and
y 1s referred to boundary layer displacement thickness §* in the places, where
the distortions were measured. In.these variables all data are grouped near two
curves, shown by thick solid and dashed lines, with data for nonlinear symmetric
and antisymmetric regimes lie near one curve and data for linear regime form
the second curve. Curve for nonlinear regimes well coincides with profile of low-
frequency pulsations in boundary layer under enhanced outer flow turbulence level
measured by Kendall [9]. Maximum of distortion in linear regimes of interaction
is shifted from the wall to y ~ 1.76".

To study the role of leading edge in wake/boundary layer interaction the plates
#1-3 were tested for the same outer flow conditions. Three tests of this type were
made for ue, = 17m/s, d = 0.09mm and distances from wire (o leading edge
L = 40, 250 and 725mm. Results of them in form of z—dependencies of boundary
layer distortions Au, and pulsations u' at all three plates for L = 40, 250 and
725mm are shown in Figures 22, 23 and 24 respectively. Distortions Au, plotted
in parts a) of the Figures were determined as a differences between the maximal
and minimal velocities in the spanwise profiles measured for y corresponding to
t = 0.5uq. Pulsations u shown in parts b) of these Figures are the maximal
over span values of r.m.s. streamwise velocity pulsations in frequency range
9— 15004 z measured for the same y. Distortion and pulsations measured in this
way are close to their maximum values in the section z = const. The data about
pulsations permits to estimate the influence of pulsations on steady boundary
layer distortion development.

For small (L = 40mm) and large (L = 725mm) distances from wire to leading
edge the influence of nose shape on boundary layer distortion is clearly defined.
In these cases the distortion grows as radius of leading edge increase, with distri-
butions of distortion over 2 are qualitatively similar for all shapes of leading edge.
For L = 725mm (see Figure 24 a)) the linear regime of distortion occurred at all
plates. -As was mentioned above, the distortion for this regime grows with x over
the entire length of plate. At first glance, it would seem that the distributions of
distortion over blunt nose plate #3 stands out of this rule, for distortion reaches
maximum at z = 300mm and then decreases. However, this is not the case for
the decrease of distortion is caused by laminar-turbulent transition occurred at
x ~ 300 — 400mm (see Figure 24 b)). Laminar-turbulent transition in this con-
figuration is considered in subsection 2.4.2 in more detailes (see also Figure 29).



At plate #2 the pulsations are sufficiently large to effect on the steady boundary
layer distortion too. Only at plate #1 the pure steady flow inhomogeneity inter-
action with boundary layer was observed. For this reason, the data obtained are
insufficient for finding the quantitative relationship between the radius of nose
and boundary layer distortion in linear regime. Whether the growth of distortion
is linear in z or it saturates at some distance from leading edge is unclear yet.

For all other distances from wire to leading edge (L = 40 and 250mm) the
boundary layer remained laminar and effect of pulsations on steady distortion
development was negligible. For L = 40mm nonlinear antisymmetric regime
occurred at all plates. The distributions of boundary layer distortion in this case
shown in Figure 22 a) have maxima at moderate distance from leading edge and
decayed for large . The maximal over z distortion is approximately proportional
to radius of leading edge, and distances from leading edge to maximum varies
In inverse proportion to this radius. It should be remarked that in Goldsteins
theory [4] the distance from leading edge to singularity is inversely proportional
to radius of leading edge also.

Distributions of distortion over = measured for L = 250mm and diflerent
plates were quite different, because they correspond to different regimes of wake
/boundary layer interaction. At plate #3 the nonlinear antisyminetric regime
occurred and distribution of Auw, is similar to that for antisymmetric regime
shown in Figure 22 a). Pure nonlinear symmetric regime occurred at plate #2
and distribution of distortion exhibited maximum and then decayed. At the most
sharp leading edge plate #1 the z— profiles of distortion for small z had features
of nonlinear symmetric regime, but for z > 300mm they becomes quite similar
to profiles observed in linear regime. So, the distortion initially decays and then
begins to grow in a manner familiar for linear regime. For small z, as usual,
the maximal distortion occurred at blunt nose plate #3. But for large « the
distortion at the most sharp nose plate #1 unexpectedly becomes grater, then
those at more blunt nose plates #2 and #3.

Boundary layer response on the wake behind a set of 5 wires was studied only
in four configurations: for L = 40mm at plates #land #3 (configurations 20 and
23) and for L = 725mm at plates #land #2 (configurations 21 and 22). Re-
sults in form of z—dependencies of boundary layer distortion Au, and pulsations
u' are shown by dashed lines in Figure 22 (for L = 40mm) and Figure 24 (for
L = 725mm) together with similar data for wake from single wire. Except config-
uration 22 with L = 725mm and plate #2, the boundary layer distortion from a
set of wires differs from those from a single wire less then 15%. In configuration 22
the distortion from the set of wires is two times greater then this from single wire.
Consequently, the low inhomogeneity amplification in this configuration depends
crucially upon the shape of oncoming velocity profile. Hence, the wake/ bound-
ary layer interaction in this regime is nonlinear. Figure 25 shows the evolution of
spanwise profiles of mean velocity and its pulsations measured in configuration
22. Unexpectedly, no deformation of almost sinusoidal profile of oncoming flow



in boundary layer is seen in this Figure. Similar profiles corresponding Lo inter-
action of wake from a set of wires with plate #3 for L = 40mm (configuration
23) are shown in Figure 26. For such small distance from wires to leading edge
the oncoming flow is a superposition of five wakes from individual wires. These
wakes initially interact with leading edge independently, so the velocity profile
for z = 25mm is a superposition of 5 profiles familiar for single wake /boundary
layer interaction in nonlinear antisymmetric regime. The orientation of flow dis-
tortion from these wires is not the same, with three middle wires produced ”left”
regime and two side wires excited "right” one. The flow distortions in all but one
wakes are identical and equal to flow distortion from single wire. This explaius
the coincidence of flow distortions.from a single wire and a set of wires for small
and moderate z. Sufficient interaction between neighboring wakes begins only
for z > 100mm where laminar-turbulent transition occurred and comparison of
distortions becomes meaningful.

Response of boundary layer at sharp nose plate #1 to both near (L = 40mm)
and far (L = 725mm) wakes seems to be linear, so the distortions from one wire
and a set of wires were approximately the same (see Figures 22 and 24). Lincar
behavior of distortion is probably caused by weak vortex lines stretching by [low
around sharp nose. However, all conclusions concerning boundary layer response
on wakes linearity drawn here are quite preliminary and should be proved during
the future work.

1.4.2. Laminar-turbulent transition caused by wake/boundary layer in-
teraction

Laminar-turbulent transition excited by wake/boundary layer interaction was
studied also. Boundary layer distortions Aw, and pulsations u" as function of z
measured in configurations where transition takes place are plotted in Figure 27.
Two different types of transition may be distinguished. The first one is associated
with origination of high pulsations (~ 6 — 8%) immediately in the first near-nose
section, where the measurements were made. This type of transition occurred
in configurations 12, 13, 23 when near wake interacted with blunt nose plates
#3 and #4. Example of mean velocity and pulsations profiles development for
this type transition excited by wake from single wire in configuration 12 is shown
in Figure 28. Similar results for transition from a set of wires in configuration
23 may be seen in Figure 26. Possible reason of pulsations origination near the
leading edge may be local flow separation provoked by wake. Really, the boundary
layer distortion in the near nose section z = 20 or 25mm in configurations 12,
23 are very strong (see Figures 28, 26) and the velocity profiles near nosc may
correspond to separated ‘flow in boundary layer. It’s interesting, that in flow
distorted by a set of wires (configuration 23) the pulsations originated in wake
behind one of wires (fourth from left side) only. It may be caused by interaction
of distortions of different orientations ("left” and “right”) near the nose. Behind
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the second wire where the same interaction takes place the growth of pulsations
occurs too, but it begins later at £ = 100mm. For regimes of interaction shown in
Figures 26 and 28 the effect of pulsations on mean flow development is significant
over whole plate surface. The flow in the centre of wake becomes turbulent at
small distance ~ 100 — 200mm from leading edge. Further, the turbulent flow
spreads on the region much wider then the part of boundary layer distorted by
the wake.

The second type of transition is characterized by gradual growth of initially
small pulsations. Complete transition of this type was observed in configura-
tions 11 and 22 for boundary layer distorted by single wire and a set of wires
respectively. Development of mean velocity and pulsations profiles in course of
transitions in these configurations are shown in Figures 29 and 25. For the wake
from single wire/boundary layer interaction (Figure 29) the maximal pulsations
initially (at z = 150mm) were observed at the sides of the wake where spanwise
gradient of velocity is maximal. In this stage of transition pulsations still have no
effect on mean velocity profile. Further at z = 350mm the additional maximum
of pulsations appears in the middle of the wake and distribution of pulsations
becomes wider. Reaching high level of ~ 10% of u., pulsations begin to deforn
mean velocity profile with velocity increases at the sides of the wake. [F inally,
at z = 400mm several maximums of pulsations forming peak-valley structure
appears and turbulence begins to spread in spanwise direction. In final section
z = 500rmm the turbulent part of boundary layer is about 5 times wider tlien
oncoming wake.

Transition excited by a set of five wires shown in Figure 25 exhibits the same
features. Initially at z = 300mm maximums of pulsations are located between
maximums and minimums of mean flow velocity and coincides with maximal
gradients of velocity in spanwise direction. Further (z = 350mm) maximums of
pulsations move to the minimums of mean velocity and finally at z = 500mm
turbulence spreads to width region. It’s interesting, that pulsations at sides of
disturbed domain are grater then those in it’s central part during entire transition
process.

To reveal the type of disturbances responsible for transition, the power spectra
of streamwise velocity pulsations were measured. These spectra in configuration
11 in section z = 150mm, where pulsations began to grow are shown in Figure
30. From this Figure it is seen that the spectra measured in the centre of wake.
at side of it, and far from the wake are quite different. A broad wave packet
with frequencies around 720Hz can be seen in the spectrum at side of the wake.
Spectrum in the centre of it contains this packet too, but the major part ol its
energy is confined in low frequency band. The reduced frequency of this wave
packet F' = 10°-27v f /ul, = 227 is approximately equals to the frequency of high-
frequency pulsations observed in flow with embedded streamwise vortices in [10].
The spectrum measured far enough from wake contains packet with f ~ 500/ z
or F' ~ 150. This packet, in principle, may be formed by Tolimien-Schlichting
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waves generated in boundary layer by the disturbances within the wake.

Spectra measured in configuration 22 where transition excited by a set of
wires was observed are shown in Figures 31 and 32. Figure 31 shows spectra
measured at the side of wake for z = —17mm, whereas spectra measured at the
nearest to centre maximum of mean velocity (z = —3mm) are plotted in F igure
32. Three spectra measured at beginning (z = 150mm}, middle (z = 200mm)
and end (z = 350mm) of transition are presented in both Figures. A packet
with frequency~ 720H z the same as for single wire is seen only in spectrum at
side of wake in the beginning of transition. Other spectra measured at side of
wake are broadband, with low frequency pulsations grow predominantly over the
middle and end of transition. In the centre of wake all spectra are broadband
and transition here is associated with growth of low-frequency pulsations.

1.4.3. Discussion

In this section the data obtained will be compared with recent experimental and
theoretical results dealing with boundary layer receptivity to quasi-steady outer
flow vortical disturbances and subsequent amplification of these disturbances in
a boundary layer. For convenience of such comparison, let’s introduce the am-
plification coefficient & defined as k& = Aup/uo. This coefficient as function of
Reynolds number R = u,z/v computed for different regimes of single wire wake
interaction with plates #1 and 3 are plotted in F 1gure 33 a) and b) respectively.
For the influence of flow inhomogeneity amplitude u is excluded by means of am-
plification coefficient introduction, the spanwise scale of flow inhomogeneity (b)
remains as a single parameter describing oncoming flow. From Figure 33 one can
see that near the leading edge the boundary layer response to flow inhomogeneity
is almost independent from it’s scale. At large distance from leading edge large
scale disturbances with b = 1.6mm (L = 720mm) amplify and small scale ones
with b = 0.88 and 0.46mm (L = 250 and 40mm) decay or remain alniost con-
stant. Similar conclusion may be drawn from Kendall’s (9, 11] experimental data
on transition driven by free-stream turbulence if the correlation between the span-
wise A and time 7 ~ 1/ f scales of free-stream turbulence A ~ const -1 ~ const/ [
is assumed. Measured in [11] r.m.s. velocity pulsations in six frequency bands
shown as function of R in Figure 34 reveals the similar behavior as amplifica-
tion coefficients in Figure 33. Really, near the nose the amplitudes in all bands
are approximately the same, so disturbances of all scales amplify almost equally
here. For large Reynolds number (far from leading edge) the low frequency or
large scale pulsations grow but small size or high frequency ones remains almost
independent from R. Another proof of this trend may be seen in Figure 35 where
broadband r.m.s. pulsations in boundary layer as function of spanwise wavenum-
ber 3 = uz;lx are plotted. This curve is computed from the cross-correlation data
given in Figure 5 of [9]. Figure 35 directly shows, that large-size disturbances
are more amplified than the small-size ones. Nevertheless, there exist maximum
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of amplitude at B ~ 2.5-107* and very large-size pulsations grow more slowly.

Estimates of 3 in our experiments obtained assuming A ~ 4b are 8§ ~ 8- 10~

for large scale inhomogeneity corresponding to L = 720mm and 8 = 1.5 - 10~3
and 3 - 1072 for near wakes with L = 250 and 40mm respectively. So, the largest
scale inhomogeneity used in our tests is too small with respect to optimal size of
disturbances exhibiting maximal amplification in [9]. This fact explains relatively
weak growth of disturbances observed here with respect to 30 — 60 times ampli-
fication of low frequency pulsations in boundary layer reported in [11]. Another
possible reason of weak growth of disturbances in our experiment is the influence
of non-linearity, for boundary layer distortion was very large ~ 0.3 — 0.5u., with
respect to r.m.s. pulsation in [11] been 3 — 5%u..

If we are of the opinion that all scales of flow inhomogeneity used in our
tests are small and correspond to middle or high frequency pulsations in [9,11],
the finding of two different vertical profiles of boundary layer distortion shown
in Figure 21 becomes consistent with data of [11]. It turns out that vertical
profiles of high frequency pulsations shown in Figure 36 are not self-similar and
changes with distance from leading edge. For small a it is similar to well-known
distribution for low-frequency pulsations shown by (X) in IMtgure 21 and it’s
maximum moves from wall as z increase. Similar correlation may be seen in
Figure 21 where dashed curve with near-wall maximum is composed from data
measured at r = 150mm, and solid curve with maximum far from wall is formed
by distortions measured at larger . However, the shift of maximum in linear
regime may be caused by non-linearity i.e. large amplitude of distortion ~ 30%
in our experiment. Really, it is the linear regime produces the maximal deviations
of the boundary layer displacement thickness in the disturbed domain. In the
centre of it 6™ exceeds the undisturbed value by factor of 1.4 (see Figure 20 b).
So, it is unclear, what value of displacement thickness should be used for scaling
of y in this regime. If some averaged 6* ~ 1.28; (63 is displacement thickness
of undisturbed boundary layer) was used, the curves for linear and nonlinear
regimes would coincide.

The amplification coefficients obtained here may be more directly compared
with theoretical results of [12], where the steady spanwise-periodic disturbances
experienced maximal spatial growth were found. The amplification coefficient
may be directly computed from the results of this work as k = /G, where G is
the energy growth. If we assume that energy in inilial section is proportional to
u?, the amplification coefficient computed in this manner will be proportional to
that measured here. Figure 37 shows amplification coefficient as function of /¢
for various 3 computed from results of [12]. This Figure is quite similar to Figure
33 a) where our experimental results are plotted, with large scale disturbances
grows with R and small size ones decay in both Figures. Theory [12] gives the
expression for wave number providing maximal growth as 8 ~ 0.45/v/R. TFor
R = 10%corresponding to = ~ 800mm in our experiment it gives § = 4.5 - 10~
which correspond to spatial period A ~ 13mm or b ~ 3.2mm and is two times
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grater than maximal spanwise scale used in our tests.

In general, results dealing with amplification of steady inhomogeneity in
boundary layer at sharp nose plate #1 obtained here are in qualitative agreement
with available data about boundary layer response to free-stream turbulence. The
amplification coefficients at blunt nose plate #3 exhibit the similar properties,
but they are two times greater then these for sharp nose plate #1. So, the response
of boundary layer at plate #3 to outer flow turbulence should be two times greater
then this at sharp nose models usually used in such experiments. Consequently,
one may suppose, that the similar development of transition at plate #3 will
take place for twice smaller outer flow turbulence level. Due to most of bodies
of practical use (wings, turbine blades and others) have blunt leading edges, this
conclusion may be important for transition prediction.

2. Part 2. Theoretical study of boundary layer receptiv-
ity to steady outer flow inhomogeneity and resulting
laminar-turbulent transition.

Introduction

Response of steady boundary layer on the plate to the steady outer flow inho-
mogeneity (or vorticity normal to leading edge) was studied in works of Goldstein
et al [7]. Here it was found that the flow around the leading edge amplify the vor-
tical disturbances throw the vortex stretching mechanism. Initially these vortices
excite distortion of boundary layer flow growing linearly in streamwise direction.
Far downstream the amplification result in appearance of flow inhomogeneity of
finite amplitude. In the experiments described in section 1. the finite amplitude
flow inhomogeneity in boundary layer was observed too.

Nevertheless, the laminar- turbulent transition is not caused directly by steady
flow inhomogeneity, but it is provides conditions for flow instability with respect
to unsteady pulsations. The stability of such boundary layer with steady spanwise
modulation of velocity profile is studied theoretically in section 2.1.

The action of vortex stretching mechanism introduced by Goldstein et all
[6] for the swept wing flow is a topic of section 2.2. In this flow additional
mechanism of flow inhomogeneity amplification via generation of steady cross-
flow instability modes was found. Results obtained in this section explains some
data of experiment of section 1. and provides the new area for future experimental
work.

2.1. Stability of boundary layer with steady inhomogeneity of velocity
profile

In this section the stability of boundary layer flow with steady spanwise mod-
ulation of velocity profile is studied theoretically. Such modulation is a model
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of a streaky structure originating in the boundary layer subjected to free-stream
turbulence. The non-uniform flow in boundary layer produced by wake is another
example of modulated flow. It’s well-known that transition is not caused directly
by steady flow distortion, but it’s initiated by the growth of high-frequency travel-
ling waves. For this reason, the stability studies of modulated flows are necessary
for understanding of transition caused by outer flow turbulence. In contrast to
generalized Rayleigh’s equation approach used in (6], the stability analysis is
based on more general linearized Navier-Stokes equations.

2.1.1. Problem formulation

Consider the stability of boundary layer flow with steady variations of velocity
profile in spanwise direction. We’ll use the coordinate system introduced in sec-
tion 2 with lengths scaled with averaged over span boundary layer displacement
thickness 6*. Basic flow Vy(y, z) is considered to be spanwise-periodic with pe-
riod T, and homogeneous in streamwise direction. We present this flow in form
of Fourier series

N )
Vo = {Uo(y),0,0} + Vi Vi = Z Vonemﬁz .
nesN (2.1)

Vi = {w;, v, w0}

where Up(y) - Blasius flow profile, V; - flow inhomogeneity, 8 = 27 /7.

There are two general types of unstable disturbances in periodic flows: the
disturbances of the same period as the basic flow (fundamental disturbances) and
subharmonic ones. Disturbances of both types will be sought in common form

~~
o
to

N
VP - !: Z Vﬂ(z)eingz] ei(ax_m) VP = {u,v,w}

n=-N

We'll consider the temporal stability i.e. complex w corresponding to real a
will be sought.

Substitution of complete flow-field V = Vo +¢V, into Navier-Stokes equations
and linearization in € gives an eigenvalue problem for w

—wl,oV,=L,0V, (2.3)

where L, and L; are linear operators including derivatives with respect to y.
Discretization of (3.3) in y yields the eigenvalue problem for matrix

(A—iwE)F =0 A=D"TA (2.4)

Here vector F includes discrete representation of disturbances and matrixes
A and D corresponds to operators L; and L.
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2.1.2. Numerical method

In all works where stability of periodic flows is studied the matrixes A and D
were determined and eigenvalue problem (3.4) is solved. Here we’ll introduce an
alternative approach to stability of complex geometry flows which is based on
algorithm for Navier-Stokes equations solution. This approach makes us possible
to study the stability of any periodic flow using a code for DNS of periodic flows.
In all of these codes the flow field is presented in form of two-dimensional Fourier
series in (x, z) plane. If we fix a part of harmonics representing basic flow, then
remaining harmonics will describe the evolution of disturbances. If the amplitude
of disturbances is small enough, it’s evolution is described by linearized (near the
basic flow) Navier-Stokes equations. These equations may be written in form
similar to (3.3)

d ' .
E(Lg 0] Vp) = L1 o Vp

where L, and L; are the same as in (3.3). All codes for DNS solve the discrete
version of these equations of form
J
EG = AG
Here A is the same matrix as in (3.4) and G contains discrete representa-
tion of disturbances. If the finite-difference scheme used in DNS code is known,
the matrix A may be easily related with matrix of transition B. The former
matrix describes the evolution of disturbances over one time step 7 and relates
disturbances at time ¢, G* and at time ¢t + 7, G as

G =BG*
Transition matrix may be directly computed using DNS code. For Crank-
Nicholson scheme used in our code, matrix B is related with A as
A et T
B = [E—EA] x [E+§A}
It is easy to prove that matrixes A and B have the same eigenvectors, and
eigenvalues of B, p; are related with eigenvalues of A, ); as
142
BT,
So eigenvalues w; of stability problem may be obtained from i as
211 — My
14
The form of disturbances corresponding to w; is determined by eigenvector of
B associated with y;.
The method described here was tested by means of computation of Blasius

flow stability and the secondary instability of finite-amplitude TS wave. The
results were in excellent agreement with those of traditional methods.

(,«JJ‘—-
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2.1.3. Results

Stability of Blasius boundary layer with R = us6"/v = 1000 distorted by har-
monic velocity modulation or by localized flow inhomogeneity were studied. The
first flow is a model of periodic streaky structure observed under enhanced outer
How turbulence level, the second one is a model of the single streak or distortion
produced by wake studied in section 2. In both flows inhomogeneity velocity
vector V; had only streamwise component u; of form

u; = af(y)g(z)

where a is an amplitude, functions f(y) and g(z) defines vertical and spanwise
distribution of flow inhomogeneity. Vertical distribution for both flows was

fly) = — P(=LFED) — exp(- Ol
max [exp(—138L) — exp(—Ll)]

(2.5)

with parameters A = 1.2 and y = 1.4 chosen for coincidence with profile of
low-frequency pulsations measured in boundary layer subjected to {ree-stream
turbulence [9]. This profile is plotted by solid line in Figure 22 a together with
profile of velocity pulsations from [9] shown by points. For the harmonic inho-
mogeneity spanwise distribution was

g(z) = cos Bz

whereas for localized inhomogeneity it was represented as

N

1—
g(z) = _2_(1 14+ (1+4¢)> ¢ cosnBz g<l1 (2.0)

n=1

The last function with ¢ = 0.63 shown in Figure 22 b has a narrow maximum
within z = 0 and vanishes over the remanding part of period.

Due to basic flow symmetry, the disturbances may be symmetric or antisym-
metric, l.e. the streamwise velocity of disturbances may be even or odd func-
tion of z. As was mentioned above, the disturbances of both these types may
have fundamental or subharmonic period. So, there exist four types of unstable
modes. Iigure 23 shows the spanwise distribution of streamwise velocity Re(u)
and amplitudes of pulsations |u| for all these modes computed for harmonically
modulated flow with a = —0.3, @ = 0.25, 8 = 0.6. Symmetric and antisymmet-
ric fundamental modes are shown in Figure 23 a and b, whercas Figure 23 ¢ and
d shows symmetric and antisymmetric subharmonic disturbances. For symmetric
modes |u| is largest at the minimums of basic flow velocity u;, whereas maximal
pulsations of antisymmetric modes coincides with maxima of gradients |Ju,/dz|.
The phase velocity of symmetric modes coincides with TS wave velocity, but
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antisymmetric disturbances propagate faster with ¢ = Re(w)/a = 0.6. Further
computations reveals that the subharmonic mode is the most unstable one among
the antisymmetric disturbances and the fundamental mode is the most amplified
symmetric disturbance. So, only subharmonic antisymmetric and fundamental
symmetric modes will be considered later. For brevity, these modes will be named
as antisymmetric and symmetric ones.

Growth rates § = Im(w) of symmetric and antisymmetric modes as func-
tions of amplitude « and spanwise wavenumber 8 are shown in Figures 24 and
25 respectively. These results were computed for a = 0.25: amplitude depen-
dance of § corresponds to 8 = 0.6, and 6(B) corresponds to « = 0.3. Crowth
rates of all modes increase with amplitude growth. For small amplitudes of flow
inhomogeneity the symmetric modes are the most unstable, whereas antisymmet-
ric disturbances becomes the most amplified for large amplitudes ¢ > 0.3. The
B- dependences of growth rates are different for symmetric and antisymmetric
modes. Growth rates of symmetric modes are maximal for B =0 and gradually
decrease with growth of 8. Amplification rates of antisymmetric disturbances
nitially increases with 8 growth, then reaches maximum at B = 0.6 and [alls off.
This result contradicts with conclusion of [10] about growth rate of these modes
proportionality to |Ju;/8z|.

Figure 26 shows the growth rates of symmetric and antisymmetric modes as
functions of reduced frequency F = 10%w/R computed in flow with « = —0.3 and
B = 0.6. Both symmetric and antisymmetric disturbances amplify much rapidly
then TS waves. The growth rates of these two types of modes are comparable,
with symmetric modes are the most unstable at large frequency, whereas the anti-
symmetric modes are the most amplified low-frequency disturbances. Instability
occurs in wide frequency range 20 < F < 220 with maximal growth rate achieves
at 7= 150. Disturbances in the same frequency range amplified in the boundary
layer flow with embedded streamwise vortices in experiment [10].

Stability localized inhomogeneity flow (3.6) with positive and negative ampli-
tudes a = +0.3 was studied in order to reveal the influence of widih of inhomeo-
geneity region on flow stability. For this purpose the stability of flow (3.6) with
¢ = 0.63 and various 3 with respect to symmetric modes was computed. The
results shown in Figure 27 demonstrates that the flow with high-speed streak
has almost the same stability characteristics as homogeneous Blasius flow. In
flow with low-speed streak the growth rates of disturbances remains the same
as in Blasius flow if 8 > 0.2. The instability in this flow becomes remarkable
only if 5 < 0.2, with growth rate of disturbances increases with 3 diminishing.
It means that single thin streak does not destabilize flow in spite of inflexible
velocity profile within it. The remarkable instability in this streak occurs only
if it’s width exceeds a threshold value L* ~ 76*. This fact explains the absence
of transition in boundary layer distorted by wake studied in section 2. Really,
in all flow configurations tested, the width of distorted part of boundary layer
did not exceeds the threshold value predicted by theory. It’s interesting to note
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that the harmonic modulation of small spanwise period T, < L* (8 > 1) leads
to remarkable instability (see Figure 25). So, the periodically placed streaks are
more dangerous that equal sole streak.

2.2. Receptivity of swept wing boundary layer to small outer flow in-
homogeneity

In this section the response of boundary layer on the swept wing to the sinusoidal

variations of outer flow velocity in spanwise direction is studied theoretically.

Similar to straight wing, the flow inhomogeneity should amplify in boundary

layer via Goldstein’s vortex stretching mechanism. The resulting disturbances in

boundary layer will be quite similar to steady cross-flow instability vortices, so

these vortices should be generated. This is an additional mechanism of steady

outer flow disturbances growth in swept wing boundary layer. The simple analytic

theory describing amplification of outer flow inhomogeneity through the cross-flow
instability modes generation is developed here.

2.2.1. Problem formulation

Consider the viscous incompressible fluid flow over the infinite swept wing. Scheme
of flow configuration and coordinates systems used are shown in Figure 37. The
outer flow is assumed to be unidirectional and it's velocity varies slightly along
the span. Let’s designate the chord of the wing as L, the mean value of outer
flow velocity as U, and the angle between the flow direction and chord as o (see
Figure 37). The radius of the wing leading edge L is assumed to be small with
respect to chord, i.e. kK < 1. However, the wing thickness is not necessary small.
Further we suppose, that the Reynolds number R = U, L/v is large enough for
viscous effects been negligeable outside thin boundary layer. To describe flow
the nondimensional variables are introduced using L and U, as reference length
and velocity. Two Cartesian coordinates systems shown in Figure 37 (x,y, z) and
(&,7,z) will be used further. Origins and applicate axis z of both systems coin-
cide. Abscisa axis & of first system coincides with outer flow direction, whereas
abscisa axis of second one is directed along the chord of the wing. Components
of vectors in these systems will be designated by subscripts z,y,z and &,7, =
respectively.

Further we suppose that velocity vector V far upstream the leading cdge
(£ — o0) 1s presented in form

V= {V,V,V.} Ve—=lteun(y) V=V, -0 - - (2.7)

where ¢ < 1 is small parameter and function ue(y) describes the velocity
variation along the span. At the surface of the wing z = z,(¢), the no-slip
boundary conditions should be established

V(&,7,2,(£)) =0

o
(v
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Boundary conditions (3.1), (3.2) together with Navier-Stokes cquations de-
scribing the flow provides complete problem formulation. In contrast to work of
Goldstein at al [4], only linear with respect to ¢ solution of this problem will e
sought here.

2.2.2. Solution for inviscid flow

As was mentioned above, the flow around the wing is inviscid outside the thin
boundary layer whose thickness is ~ R~'/2. The solution for mviscid flow is
sought in form

V = Uo + €u

where Uy is a potential basic flow around the wing corresponding to uniform
outer stream and eu is a disturbance, generated by outer flow inhomogeneity.
The disturbance is governed by linearized Eulier equations. The solution of this
equations obtained in [13] can be specialized to present case to give

u=ub 4 Ve (2.9)
ull = Uoo(Y) - VA(2,y,2) (2.10)
Ap = —(V,ul) (2.11)
(v997 n),z:z,({,n) =0 (212)
Here Y is an integral of equation for streamlines of basic flow
dz  dy _dz
UOJ: B UOy B UOz

such, that Y — y as £ — —o0, and A(z,y,z) is Laighill’s [2] drift function

1
U0$($I> y(l")a Z(l"))

Integration here is performed along a streamline of basic flow passing through
point z,y, z. The difference of drift function between any two points on a stream-
line 1s équal to the time it takes a fluid particle to transverse the distance between
those points.

For subsequent consideration it is more convenient to use coordinates (&,7, z)
fitted to wing chord. In these coordinates the drift function takes form

— 1| dz’

A(x,y,z):a:-f—/_;[

A=npsina+ A,(¢2)
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where
cos o

AL, 2) =§+/_io [ Tad —1} d¢’ (2.13)

is the drift function corresponding to flow around straight wing with outer
flow velocity equals 1. To find integral Y, let’s relate dy with d¢ for displacement
along the streamline. Bearing in mind relationship

Uon sin &
dn = —d¢ =
1= T ™ = U

dg

we find

dy = cosadnp —sinadé = sina [cosa - l} dé
Uof

Integration of this along streamline provides the expression for Y’
Y'=lim y(§,n(6),2(§)) = ncosa — AL(¢,z)sina (2.14)

Substitution of this into (3.4) and (3.5) gives the expression for u® and
equation for ¢ in coordinates (¢,7, z)
ull) = u o (Y)sin o uld =y (Y)V,AL cosa (2.15)
U 1 = Ueo 14 2.1
82—¢+V —ueo(Y) - V2A  cosa —u, [1—(V A )2} sinacosa (2.16)
an? 1= —uo FRAYE 00 1A1)s cos 2.
vhere ul {u,E , U 1)} and V = {35, aa } are projections of u!) and three-
chmensmnal operator V onto (£,7) plane.
Further we introduce the ortohonal coordinate system (s, 7) associated with
streamlines of potential flow around the wing

/¢ 1) /‘P dv

§ = =

0 U2 + W2|\I’=con.st 7 0 \/U2 + W2|d>=const
where

_ o 0% _ 0¥ Gor _ 00 _ 0¥
" cosa  OE Oz cos & z d¢

and ¥ = 0 at the wing surface and ® = 0 in the stagnation point. For
Jacobian I =1|d(s,n)/0(€,n)]| = 1, the expression (3.9),equation for ¢ (3.10) and
operator V  remain unchanged upon the coordinates transformation. Ilowever,
boundary conditions at the surface (3.6) become more simple

[
—
-1
~

Jo _ .
5;]—(370) =0 (2.
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Solution for potential ¢ will be sought in form
g.o:c,o/+§5 golzcota/uoo(Y)dY

Substitution of this into (3.10), (3.11) gives the following problem for &

g_;% + V313 = (1 — cot? a) u;o(Y) sin ¢ cos

- 2.18
%2(5,0) =0 (2:18)

Our task is the finding the solution at the wing surface. To do this let’s find
the asymptotic behavior of A; as n — 0. At first the expression for A} In
coordinates (®,¥) should be found. For this purpose we relate dd and d¢ for
displacement along the streamline as

a9 a9 U? + w?
dq) = 'a—é_dé. + 5;(14 = Udf + Wdz, = _T—(lf

substitution of this into (3.7) gives

—_ =) 1
AL(@ W) =0+ Kq(¥) - [ [W - 1] 4o

where
Ao(0) —/+°° [—1——1] o
T e LU W
as shown in [4], Z\;(\I!) becomes singular near the wall as

Ao(¥) ~ —rIn ¥ + Agg(¥) ¥ — 0

where 7 is radius of leading edge and &—00(\11) remains bounded as ¥ — (. So.
the drift function within the wall behaves as

A_L——r—ilnn-kAo(s) n—0
a
where

oo 1 -
NDo(s) =@ —A [_U? - 1J dd — Sln Us + const
v=0

Here Uy(s) is velocity at the wall, a is constant depending from the shape of
the profile of wing. From this result and (3.8) it follows that

Y—+77cosa+flnnsina—Ag(s)sina n—0 (2.19)
a

With this asymptotic of Y in hand one can easily show that solution of (3.12)
within the wall appears in form

¢ —n?F(s,n,Y) n—0
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where F' remains bounded when n — 0. So, V& vanishes as n — 0, and the
solution for velocity of disturbance near the wall in accordance with (3.3), (3.9),
(3.12) becomes '
(?A,L a(p(

Us ~ Uoo (Y )—=—cosa+ — — 0

Js Jds

7

. 1
Uy ~ uoo(Y)51na + a—f] — -S—l-n—&uoo(y) as 11 — oc

U, — 0

Finally, we have following expressions for components of complete velocity
vector V near the wall
Ueo(Y)

Vi = Up(s)cosa; V, > sina+ e— ;7 Va—0 as n— 0 (2.20)
sina

2.2.3. The boundary layer solution

Near the wall the boundary layer of thickness ~ R~1/? should be introduced to
fit no-slip boundary conditions. In this layer we shall use the rescaled normal to
wall coordinate Z = nvR and notations u,v,w for velocity components along
5,7 and n axis. Due to problem linearity, the boundary layer solution will be
sought in form

u = uo(s,Z) + et(s,n, Z)

v = 'U()(S,Z) + 65(577772)
1
w= —=wp(s,Z)+ cw(s,n, Z
NG o(s, Z) (s,7,2)
p= pO(S’Z) + 6]3('577772)
where basic flow ugp, vo, wg and py correspond to boundary layer in the homo-
geneous stream and @, v, W, p describe perturbations of velocity and pressure

introduced by outer flow inhomogeneity. Basic flow is described by conventional
Prandt! equations with boundary conditions

ug(s,0) = vo(s,0) = wy(s,0) =0;  ug(oo) = Up(s) cos a vo{00) = sina

Disturbances obey the linearized Navier-Stokes equations with boundary con-
ditions following from (3.13), (3.14)

u, v, w(s,n,0) =0

u(s,n,z) = 0;
as Z — oo

U(8,7,2) = U (77 cos o + (f InZ — Ao(s)~ £ln R) sin a)

sina
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For the sake of simplicity, the sinusoidal {low inhomogeneity ol [ori
Uoo(y) = VP (2.21)

will be considered further. The period of inhomogeneity is assumed to be ol
the same order as the spanwise period of cross-flow instability vortices, so /3 is
assumed to be of order of 1.

To meet the boundary conditions (3.15), (3.16) the solution for disturbances
of velocity and pressure will be sought in form

(s, Z)ei\/i_?(x(5)+ﬁn) (

o
o
M

=

g @l e
=) R, )

where x(s) = —B(Ao(s) + ZInR)sina, 8 = Bcosa. From (3.15), (3.16) it

follows that amplitudes 7, v, W should satisfy the boundary conditions

etuan

- Z — 0
sin a

(2.23)

u(s,0) = 9(s,0) = ©(s,0) = U(s,00) =0  o(s,z) —

where y = @—"QLE sin a.

The disturbances (3.17) are the products of amplitudes @, &, @, p, which vary
relatively slowly with s to fast oscillating exponent. When they are substituted
mto linearized Navier-Stokes equations the terms of order of R, VR and | appear.
If the terms of order of 1 were neglected and pressure is eliminated from equations,
then the following equations for amplitudes of velocity are obtained

dw

L(@)ow + §(M(a)ow + N(a)og +K(@ou)=0; s=pR"Y2 (224
iaﬁ+iﬁﬁ+6@ =0
Os
Here
I . 0 ) _uy . 9%y 1 o* " :
L(CY)—(ZQUO+2,BUQ)-(W—’Y)—(Zaazz+Zﬂazz -ﬁ ﬁ—‘y
— 32 32160 . . . -
N(a@) =up (@ - 72) - 57 + 2ia (1@ug + 1 Bvo) (2.25)

and @ = ‘%, 7? = a%+ #% Expressions for operators M(a@), K(@) describing

the effect of low nonparallelity will not be used further, hence they are omitted
here.
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Solution of (3.19) with boundary conditions (3.18) will be sought as a sum

u 0 Ug
{i)l}:{tzr }(z)+{ 120 }(S,Z) (2.26)

where augend fits the boundary conditions (3.18) and addend satisfy the ho-
mogeneous boundary conditions

Uo(s,0) = Do(s,0) = Wo(s,0) = Gg(s,00) = Vo(s,00) =0 (2.27)
One of possible forms of augend in (3.21) is

. 1 zZ . '
H(Z)ezuan _[I) - _ 2,3 H(Z )ezuan dZ/

- r .
S & sin o Jo

U, =
where H(Z) is an arbitrary function filling the following requirements
H(Z)—>1, Z— oo H(Z)]Z® — const Z — 0

This choice permits us to satisfy continuity equation for ©,, @, and ensures
! ~

that @,, 0., @., ©. and @IV are finite as Z — 0.
Substitution of (3.21) into (3.20) gives the following problem for G, Ty, Wy

L(a)o@o+6(M(a)ozT)0+N(a)o%+K(6)oao) = —L(@)ow,—sM(@)ow, (2.28)

To solve it, let’s suppose that @& is close to eigenvalue of Orr-Sominerleld
equation g, corresponding to steady cross-flow instability mode. Physically, it
means that the direction of cross-flow instability vortex is close to the stream-
line of undisturbed flow at the outer edge of boundary layer. Introducing small
parameter § we write

a = ap + 0A(s); A(s) ~ 1
In this case the Orr-Sommerfeld operator L(@) may be presented in [orm
oL

L(@) = L{ao)+03_(a0) - A(s)

aﬁa (3.23) becomes
[L(ao) + 623 (ag) + EM(ay)] oo + 6N(a)od + 6K (ay)oila + O(08) + O(8?) =

—L(&)ow, — SM(@)ow,

25



If we assume that 8 >> ¢ the solution of this equation may be sought in the
frame of multi-scale method as

1 1 )
where ®(s, Z) is an eigenfunction of Orr-Sommerfeld equation corresponding
to eigenvalue ag. Substituting this into (3.22) and retaining only O(8) terms we
obtain

. oL dA
L(ao)ow; = ~L(ag)ow, — AAa—a(ao) od -~ X

This equation for w, has solution only if right part of it is orthogonal to eigen-
function ®* of adjoint to L{ap) operator. The orthogonality condition provides
the following equation for amplitude A(X)

N{a,)o @

dA

7% —iA0X) - A= P(AX)
where o+ L R

POAX) = — 427 Llao)ow,)

(@+,N(a,) o ®)

and (¥, ®) = [{° V®dZ is a definition of scalar product.
[t may be easily shown, that general solution of this equation is

do

: P
A=ae®®) 1 i— 1 0)); X =

= A(MX) (2.30)

where a is constant depending from initial condition. To formulate this con-
dition, let’s suppose that near the leading edge the difference @ — oy becomes
finite, so |A(s)| becomes ~ 1/8 when s becomes small. Here scaling (3.24) be-
comes unsuitable and @y ~ 1 or A ~ @ should be written instead of it. So, if we
want to match the solution (3.25) with solution near the leading edge we must
to write

A~O(8) ~a+iP-0(f)

From here we have an estimate ¢ ~ O(0), so first term in (3.25) may be
neglected and finite expression for amplitude becomes

P
A—ZZ

So, the expression for @ in ordinary boundary layer variables is

W= z'_Pi(IJ(s, Z)+ O(a ~ o)

a — Qg
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This expression is valid for R7V?2 < |[@—ag] € 1. I |&@ — @] becomes
~ R~/ the effect of flow nonparallelism should be taken into account.

Results obtained reveals that boundary response on outer flow inhomogeneity
is inversely proportional to difference @ — ay. To estimate this difference we
shall use the generalized Faulkner-Scan (F-S) self-similar flow as a simple model
of boundary layer flow at real swept wing. This flow corresponds to outer flow
velocity distribution

Up=s"cosa Vo =sina

and is defined as
I Z 1] Z . 2 1/2 . —~m
ug=s"F <'6—> Ccos & UO:G (3) sin o 6 = (7n+1> R_l/zsl?

where functions F’ and G are solutions of boundary value problem for ordinary
differential equations

F'+FF' + 2 (1-F?) =0 G"+FG =0
F0)=F'(0)=0 F'(c0)=1 G(0)=G'(0) =0 G'(c0) =1

Of course, real flow over the wing should be approximated by 1°-S Ilow with
exponent m varying with s. Immediately at the nose the llow near stagnation
point with m = 1 occurs, than flow acceleration becomes weaker and m gradually
diminishes to zero. After the point of minimum static pressure, the flow begins
to retard and m becomes negative. So, to estimate the difference @ — oy over
all wing surface, it should be computed for F-S flow with various m. Results of
such computations made for B = 1000, o = /4, s = 1 and several values of
3 =10.2, 0.4 ,0.6 are presented in Figure 38. The real part of difference @ — ay
and it’s absolute value as funetions of m are plotted by solid and dashed lines
in this Figure. For all values of spanwise wavenumber Re(@ — ay) is positive for
positive m and negative if m is negative. As m tends to zero Re(&@ — ay) goes to
zero. Due to imaginary part of o being small ~ 1072 and @ rcal, the
absolute value of @ — o is predominantly defined by it’s real part. So, |& — ay]
becomes small enough as m tends to zero. Unfortunately, cross-flow instability
modes do not exist for m = 0, so the value of @ — ag is not defined in this point
and minimum of [&@ — ag| could not be found at all. However, for smallest values
of m = £0.001, where computations were performed the absolute values |& — ay)
were about 2 - 1072, so the boundary layer distortion may be about 500 times
greater then oncoming flow inhomogeneity.

In real flow over the wing, the boundary layer velocity profiles with m ~ 0
correspond to flow around pressure minimum. So, the maximal boundary layer
distortion should occur near the minimum of static pressure distribution over
wing profile. However, this conclusion is quite preliminary due to crudeness of
F-S flow model. More realistic prediction of boundary layer distortion may be
reached by means of solution of (3.23) in the boundary layer over real wing using
PSE-method.
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3. Conclusions

1. Large volume of averaged (steady) and pulsational flow characteristics ol
boundary layer/free stream inhomogeneity interaction have beey measurcd witl
plates of different nose shapes and for different free stream inhomogeneities. low
inhomogeneities were created by the wakes behind one or several wires stretched
normal to leading edge.

2. It was found, in a qualitative agreement with Goldstein’s theory [4,6], that
the deformation of normal to the plate vorticity by the flow around the leading
edge may be the cause of streamwise vortices (streaks) formation observed in the
presence of free-stream turbulence.

3. The vortex stretching in course of this deformation leads to significant
amplification of disturbances in boundary layer. ‘ ‘

4. Three different regimes of single wire wake/boundary layer interaction
were discovered: linear, symmetric nonlinear and antisymmetric nonlinéar ones.
The regimes are distinguished by different character of downstream amplification
of disturbances and different spanwise disturbances distribution. The antisym-
metric regime is the most unexpected as antisymmetric spanwise distribution of
disturbances in boundary layer takes place for symmetric upstream boundary
conditions.

9. The increase of wake velocity deficit and decrease of wake width lead
to transformation of distortion from linear to symmetric nonlinear and then to
antisymmetric nonlinear regime. The criterion for transition to antisymmetic
regime was introduced.

6. Distortion of velocity profile in the boundary layer for nonlinear regimes
have maximum close to leading edge. This maximum may be the cause of carly
(bypass) laminar-turbulent transition. If not, the distortion then decreases down-
stream due to viscous dissipation and becomes smaller then gradually increasing
distortion for linear regime.

7. The vortex lines stretching and hence disturbance amplification increase
with increase of plate nose radius.

8 Interaction of several wakes generated by a set of wires intensify the pro-
cesses caused by single wake.

9. The wake/boundary layer interaction properties investigated here simu-
late/reflect boundary layer processes caused by low frequency vorticity of free-
stream turbulence.

10..-The results obtained permit to suppose that the shape of leading edge
should have noticeable influence on laminar-turbulent transition caused by outer
flow turbulence/inhomogeneities. Transition Reynolds number for blunt nose
body may be few times smaller than those observed in well-known experiments
[9-11] performed with sharp leading edge plates. This difference caused not so
much by different pressure distribution but by different stretching of vortex lines
by flow around leading edge.
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11. The stability of steady spanwise-modulated flow was studijed theoretically.
This flow is a model of streaks found in experiments of Kendall et al [9-11]
at high free-stream turbulence level. It was shown, that one isolated streak is
more stable then periodically placed streaks of the same shape. The isolated
streak does not destabilize flow at all if it is narrower then threshold value of
~ 76". Experiment described in Part I shows that laminar-turbulent transition
in periodically modulated boundary layer distorted by the wake from a set of
wires really occurred earlier then in a boundary layer distorted by single wire
wake.

12. The response of boundary layer on the swept wing to the sinusoidal
variations of outer flow velocity in, spanwise direction was studied theoretically.
In addition to Goldstein’s vortex line stretching mechanism, the amplification of
outer flow inhomogeneity in boundary layer through the cross-flow instability mode
generation was found. This phenomenon may lead to extremely high receptivity
ol swept wing boundary layer to outer flow vorticity.

13. Understanding of streaks formation and their structure opens the hope
of control the laminar-turbulent transition caused by outer flow vortical distur-
bances.
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Table

oumber num- num . .
of ber ber U d L ug b Rd R 1 regime K Ky X
configu of of {mm] {mm) {mm) (sec*) {mm)
ration plate wires
5
1 1 1 17 | 009 40 0056 | 046 | 106 | 1.17-10° | s 0.15 3.9-10 -
-3
2 1 1 17 | oo 250 | 0032 | o88 | 106 | 1.17-10° s 0045 | 11710 -
3 1 i 17 | o009 720 | 0020 | 166 | 106 | 1.17-10° I 0.015 wiet| .
.3
4 2 1 17 | o009 40 0055 | o046 | 106 | 1.17-10° as 0.30 5610 -
-3
5 2 1 17 | 009 150 | 0039 | 073 | 106 | 11710 « 0.133 2.5.10 -
6 2 1 17 | 009 250 | 0032 | o088 | 106 | 1.17-10° s 0.09 17163 -
7 2 1 17 | o009 s00 | 0.023 127 106 | 1.4710° 1 0.046 8.5-1G ¢ -
8 2 1 17 | o0 725 | 0020 1.66 | 106 | 1.17.10° 1 0.030 se10f |
-3
9 3 1 17 | 009 40 0055 | 046 | 106 | 1.17.00° | as 0.64 8.1:10 -
: -3
10 3 1 17 | o009 250 | 0032 | o088 | 106 | 1.171f « 0.191 2410 -
1 3 1 17 | o009 725 | 0.020 166 | 106 | L1716 1 0064 | 803107 | 400
12 4 1 17 | 00 40 0055 | 046 | 106 | n171c° as. 120 Lol | s
13 4 1 17 | 009 150 | 0039 | 073 | 106 | L1713 s 0.538 50402 | 75
14 4 1 17 | 009 250 | 0032 | o088 | 106 | 1.1710° s 0.360 34002 | 250
; -3
15 2 1 5 03 40 0.109 107 | 104 | 34510 as 0.255 6.7-10 -
16 2 1 5 03 100 | o073 133 | 104 | 34510° s 0.137 3.6:10° -
5 -3
17 2 1 5 03 200 | 0.040 187 | 104 | 34510 s 0.053 1.4-10 -
18 2 1 5 | oo 10 0.13 0284 | 31 | 34510° s 113 2.9.16°¢ -
19 2 1 s | o009 40 0064 | 0567 | 31 | 345.10° s 0282 | 736103 .
20 1 .5 17 | 009 40 0.055 - 106 | 1.17-10° - - - -
21 1 5 17 | 009 725 0.02 - 106 | 1L1710° - - - -
22 2 5 17 | 009 725 0.02 - 106 | 1.17-10° - - - 400
n 3 5 17 | o009 40 0055 - 106 | 117-10° - - - 100

* regimes of interaction®, | - linear, s - symmetric nonlinear, a.s -
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Figure 1. (a) - experimental setup: 1 - plate, 2 - wire(s), 3 - wire holder,
N 4 - probe, 5 - wire holder movement, 6,7 - probe movement,
8,9 - flaps.
(b) - coordinate system and general designations.
(c) - parameters of single wire wake: u, - velocity deficit,
b - half- width.
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Figure 2. Contours of leading edges
of plates Ne 1 - 4
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Figure 3. Velocity distribution over upper (—)
and lower (- - -) sides of nose.

a) - symmetric flow over plates Ne 1 - 3; plate Ne 1 (4); plate Ne 2 (®); plate Ne 3 (A);
b) - non-symmetric flow over plate Ne 4 (@)
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Figure 4 Velocity distributions along the plane parts of plates.
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Figure 6. Velocity profiles in boundary layer at plate Ne 2.
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Figure 9 . Wake behind wire of d = 0.3 mm
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Figure 10 . Wake behind 1 and 5 wires of d = 0.09 mm
in flow with ue =17 m/s
(a) (o) - velocity deficit in the wake from single wire;
" (+) - flow distortion Au/u,, in the wake from 5 wires
(b) - half-width of wake from single wire b
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Figure 11. Mean velocity profiles in wake behind 5 wires
of d = 0.09 mm in flow with u,= 17 m/s
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Figure 12 . Boundary layer distortion in linear regime of interaction.
( configuration 8; u,=17 m/s; plate Ne 2; d=0.09 mm;
L =725 mm)
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regime of interaction
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Figure 18.Streamwise velocity distribution in (y,z) - plane at x=250 mm
measured in configuration 8 (linear regime)
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Figure 19, Concep
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Figure 20 a). Boundary layer distortion in configuration 10

wht‘ere initially symmetric velocity profile gradually becomes
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Figure 21. Vertical profiles of flow distortion in boundary layer
measured in different configurations (+l0u**)
common curve for linear reglmes )
common curve for nonlinear regimes (- - -),
low-frequency pulsations in boundary layer
subjected to free-stream turbulence [9] (x).
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Figure 22. Flow distortion Auy, (a) and r.m.s. velocity pulsation (b)
as functions of x for near wakes (L = 40 mm) interaction
with plates Ne 1 - 3.

A - plate Ne1; @- plate Ne2; ¢ - plate Ne3;
(—) - single wire wake; (- - - ) - wake from 5 wires.
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Figure 23. Flow distortion Au, (a) and r.m.s. velocity pulsations (b)
as functions.of x for medium wakes (L = 250 mm) interaction
with plates Ne 1 - 3. Designations are similar to Figure 22.
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Figure 24. Flow distortion Auy, (a) and r.m.s. velocity pulsations (b)
as functions of x for far wakes (L = 725 mm) interaction
with plates Ne 1 - 3. Designations are similar to Figure 22.
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Figure 25 Spanwise profiles of mean velocity u and r.m.s.
pulsations u' in boundary layer in configuration 22.
(U= 17 m/s; 5 wires; plate Ne 2; L = 725 mm)
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Figure 26 . Spanwise profiles of mean velocity u and r.m.s.
pulsations u' in boundary layer in configuration 20.
(Uo=17 m/s; 5 wires; plate Ne 3; L= 40 mm)
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Figure 28 . Spanwise profiles of mean velocity u and r.m.s.

pulsations u' in boundary layer in configuration 12.
(U=17 m/s; plate Ne 4; d = 0.09 mm: L= 40 mm)
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Figure 29 . Spanwise profiles of mean velocity u and rm.s.
puisations u' in boundary layer in configuration 11.
(U=17 m/s; plate Ne 3; d = 0.09 mm; L= 725 mm)
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Figure 30. Power spectrum of streamwise velocity pulsations S(f)

measured in configuration 11 at x = 150 mm
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Figure 31. Evolution of power spectrum streamwise velocity pulsations
S(f) measured at the side of disturbed area (z = -17 mm) in
boundary layer distorted by wake from 5 wires in configuration 22.
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Figure 32. Evolution of power spectrum of streamwise velocity pulsations S(f)
measured in the nearest to centre velocity maximum (z = - 3 mm)
in boundary layer distorted by wake from 5 wires in configuration 22.
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Figure 33. Amplification coefficient k= Ay, /u, as function of Reynolds

number Re = u x/v for different wakes interaction with sharp
nose plate Ne 1 (a) and blunt nose plate Ne 3 (b)
® - wake from wire of d = 0.09 mm at L = 40 mm, a.s. regime

& - wake from wire of d = 0.09 mm at L = 250 mm, s. and tr. regime
A - wake from wire of d = 0.03 mm atL = 725 mm, s. linear regime

65



0.025

0.020 —

0.015

0.010 -

0.005 +

I I ] [

0.000

0.0

0.2 0.4 06 0.8

Re*10®

Figure 34. Velocity pulsations measured in different
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of Reynolds number Re = u, x/v.

1-4-8Hz; 2-8-12Hz; 3-12-16 Hz:
4-16-20 Hz; §-20-24 Hz; 6-24 - 28 Hz

66

1.0



l | I |
0.0 0.2 0.4 0.6 0.8 1.0

B*10°

Figure 35. Broadband velocity pulsations in a boundary layer subjected
to free-stream turbulence as function of spanwise wavenumber.
Computed from data of Figure 5 of [ 9 ].
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Figure 38. vergeal (a)

and spanwise (b) profiles of flow inhomogeneity
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Figure 40. Growth rates of symmetric (— +—) and antisymmetric  (-—o— ) modes as
lunctions of modulation amplitude « in flow with < =025, fi =(.6.
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